Down Syndrome: Advances in Molecular Biology and the Neurosciences

GEORGE T. CAPONE, M.D.
Department of Pediatrics, Johns Hopkins University School of Medicine, and Division of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland

ABSTRACT. The entire DNA sequence for human chromosome 21 is now complete, and it is predicted to contain only about 225 genes, which is approximately three-fold fewer than the number initially predicted just 10 years ago. Despite this remarkable achievement, very little is known about the mechanism(s) whereby increased gene copy number (gene dosage) results in the characteristic phenotype of Down syndrome. Although many of the phenotypic traits show large individual variation, neuromotor dysfunction and cognitive and language impairment are observed in virtually all individuals. Currently, there are no efficacious biomedical treatments for these central nervous system-associated impairments. To develop novel therapeutic strategies, the effects of gene dosage imbalance need to be understood within the framework of those critical biological events that regulate brain organization and function. J Dev Behav Pediatr 22:40–59, 2001. Index terms: Down syndrome, chromosome 21, gene expression, brain development, neurobiology, cognitive impairment, Alzheimer’s disease.

One hundred thirty-five years ago, John Langdon Down, an Englishman, published the first clinical description of the condition that now bears his name. While working as superintendent of the Earlswood Asylum for Idiots, he described patients with similar Asiatic or “Mongolian” features in an article titled “Observations on an Ethnic Classification of Idiots.”1 Down’s original report attributed the condition to maternal tuberculosis. In 1932, Waardenburg suggested that the syndrome was a consequence of a chromosomal abnormality. In 1959, Lejeune et al2 confirmed the presence of trisomy 21 in nine infants. The first neuropathologic description of the brain in Down syndrome (DS) was provided by Fraser and Mitchell in 1876.3 Not only did they remark upon the comparatively simple gyration pattern of the cerebral hemispheres, but they called special attention to the nearness of the superior temporal and inferior frontal gyri and noted a possible relationship to speech production.4 Eleven years before Lejeune et al’s findings, Jervis5 described classic neuropathologic stigmata of Alzheimer’s disease in three adults with DS aged 35, 42, and 47 years. During the past 50 years, great strides have been made toward understanding and treating the myriad medical conditions associated with DS.5

Throughout this century distinct genetic, neurobiologic, metabolic, developmental, and medical models of DS have evolved, each having its own set of principles, pedagogy, and practices that has produced a “separate definition of reality” among basic scientists, health care practitioners, and parents, as well as an array of treatment options both real and imagined. This review is focused specifically on the central nervous system (CNS) manifestations of trisomy 21, its relevance for early developmental function, and certain aspects of aging.

DS may be understood best as a syndrome complex of genetic and epigenetic origin with protean neurobiologic consequences and several characteristic neurodevelopmental manifestations.6–8 At present, there are no efficacious, biomedically based treatments for the CNS impairment seen in children with this condition. To advance our understanding of this biologically complex condition, and toward the development of novel therapeutic approaches, clinician-scientists must be able to integrate information from many disparate disciplines, including molecular genetics, developmental biology, and the neurosciences.

CYTOGENETICS

Down syndrome (DS) is a chromosomal disorder that occurs in approximately 1 in 800 to 1000 live births. DS most often results from complete trisomy of chromosome 21 due to nondisjunction during gamete formation.9 In approximately 95% of cases of trisomy 21, the nondisjunction is of maternal origin.9 Such cases of nondisjunction seem to occur “randomly” during meiosis, as the extra

Address for reprints: George T. Capone M.D., Down Syndrome Clinic, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, Maryland 21205; e-mail: capone@kennedykrieger.org.
chromosome is not “inherited,” per se. Rarely, nondisjunction will occur after fertilization is complete, resulting in two different cell lines. This condition is referred to as mosaicism because one trisomic and one euploid cell line exist within the same embryo-fetus. A small number of cases result from either complete or partial translocation of chromosome 21 to another chromosome, usually in the D (13–15) or G (21–22) group. Some forms of translocation DS are associated with a familial pattern of inheritance. Overall, 90% to 95% of cases of DS result from full trisomy 21; 2% to 4% result from translocation; and 2% to 4% are the result of mosaicism.

MOLECULAR GENETICS

Chromosome 21, the smallest human autosome, contains 33.8 million base pairs of DNA and is predicted to contain just 225 genes, many or all of which contribute to the pathogenesis and phenotype of DS. It is acrocentric, with two arms and its centromere close to one end. The short arm (21p) consists of the nucleolar organizer region that contains multiple copies of genes coding for ribosomal RNA and a more proximal region composed of highly repetitive DNA sequences. The genes on 21p do not seem to be essential for normal development, because duplications or deletions in this region usually have few observable phenotypic manifestations. All of the other genes on chromosome 21 map to the long arm (21q). At least 94 known genes are listed as mapping to 21q. Rapid advances in understanding the genes implicated in DS are due, in part, to technologic innovations that have allowed researchers to isolate small, discrete portions of the chromosome or individual genes to determine the DNA sequence and construct detailed chromosome maps. Several different types of maps of chromosome 21 are being developed (see reviews by Antonorakis and Onodera and Patterson).

In an attempt to assign the individual phenotypic features of DS to specific subregions of chromosome 21, investigators have begun constructing phenotypic maps. These are constructed using DNA from individuals with rare partial duplications (i.e., segmental trisomy) of 21q and correlating this cytogenetic information with clinical phenotype. The conceptual bases for phenotypic mapping of aneuploid syndromes have been put forth by Epstein. The most important a priori assumption is that the resulting phenotype of any aneuploid condition results from an abnormal number of gene copies present on the unbalanced chromosome, and that specific components of the phenotype are attributable to an imbalance of specific genes. Thus, in trisomy 21, the phenotype is a direct consequence of a gene dosage imbalance of the genes on 21q, which are present in three copies. The existence of a putative minimal or “critical region” on 21q, which is responsible for most of the physical features of the DS phenotype, has also been suggested.

Transcription maps of 21q are being constructed in an attempt to identify those DNA sequences that are expressed within a given tissue compartment. A transcript map of a small 1.2-Mb region within the putative critical region (around D21S55) has recently been established. This endeavor will serve as a model, as efforts continue to generate gene expression data for the remainder of 21q.

CNS Gene Expression

It is estimated that 50% to 65% of all genes in the human genome contribute to the development and/or function of the CNS. Accordingly, of the 225 genes predicted to map to the long arm of 21q, between 110 and 150 may be expressed in the brain and spinal cord. Theoretically, one extra copy of each of these genes should lead to a 50% increase in messenger RNA (mRNA) and its gene product (protein). The developmental consequences of increased gene dosage depend, in part, on the biological function of the gene product itself (e.g., enzyme, structural protein, transcription factor, intracellular signaling molecule, cell surface marker, receptor subunit, etc.).

At this time, at least 10 genes listed in the OMIM catalog are known to exert an influence on CNS structure or function (Table 1, see names in boldface type). The function of these genes and/or protein products have been partially characterized, and many are being tested to determine their role in the neuropathogenesis of DS.

Amyloid Precursor Protein. The gene for amyloid precursor protein (APP) maps to q21.3–22.05. Mutations in APP are associated with some cases of familial Alzheimer’s disease (AD), as well as one form (Dutch-type) of cerebral amyloid angiopathy. The APP gene codes for a large, transmembrane protein expressed in both neurons and astrocytes. Although the function of APP protein is not precisely known, various fragments are associated with the promotion of cell survival, stimulation of neurite outgrowth, and synaptogenesis, modulation of synaptic plasticity, regulation of cell adhesion, and neuroprotection against excitotoxic and oxidative insults. APP gene expression is regulated during CNS development and has been found to be overexpressed in the brain of at least one fetus with DS.

Full-length APP mRNA undergoes alternative splicing to produce at least three different isoforms (695, 751, and 770AA) that can be cleaved at different sites by α-, β-, and γ-secretases during normal cellular metabolism. The processing seems to be regulated by a heterogenous assortment of stimuli, including acetylcholine, glutamate receptor activation, synaptic activity, cytokines, and neurotrophic factors. Those stimuli that regulate the production of a secreted form of APP (sAPP) via the α-secretase pathway seem to be especially important in modulating effects on plasticity, neurite outgrowth, and neuroprotection.

Superoxide Dismutase. The gene for superoxide dismutase (SOD-1) maps to q22.1. Mutation of SOD-1 is associated with a familial form of amyotrophic lateral sclerosis (ALS). ALS is a progressive degenerative disorder of large motor neurons in the brain and spinal cord. The cascade of events leading to neuronal degeneration is believed to be initiated by harmful byproducts of oxidative reactions within affected cells. SOD-1 protein is a cytoplasmic enzyme that catalyzes the dismutation of superoxide radicals (O2·−), a product of normal oxidative
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Location</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABT</td>
<td>chr 21</td>
<td>β-amino acids renal transport</td>
</tr>
<tr>
<td>ABC8</td>
<td>q22.3</td>
<td>Drosophila homolog of (ABC-binding cassette transporter 8)</td>
</tr>
<tr>
<td>ADARB1</td>
<td>q22.3</td>
<td>Adenosine deaminase, RNA-specific, B1</td>
</tr>
<tr>
<td>AIRF</td>
<td>q22.3</td>
<td>Autoimmune regulator</td>
</tr>
<tr>
<td>AML1</td>
<td>q22</td>
<td>Acute myeloid leukemia oncogene</td>
</tr>
<tr>
<td>APECED</td>
<td>q22.3</td>
<td>Autoimmune polyglandular disease, type I</td>
</tr>
<tr>
<td>APP</td>
<td>q21.3–22.05</td>
<td>Amyloid-β precursor protein</td>
</tr>
<tr>
<td>ASNSL2</td>
<td>chr 21</td>
<td>Asparagine synthetase-like 2</td>
</tr>
<tr>
<td>ATP5O</td>
<td>q22.1–22.2</td>
<td>ATP synthase, H+ transporting mitochondrial F1 complex, O subunit</td>
</tr>
<tr>
<td>BAS</td>
<td>chr 21</td>
<td>β adrenergic response</td>
</tr>
<tr>
<td>C21orf2</td>
<td>q22.3</td>
<td>Chromosome 21 open reading frame 2</td>
</tr>
<tr>
<td>CAF1A</td>
<td>q22.2</td>
<td>Chromatin assembly factor I, p60 subunit</td>
</tr>
<tr>
<td>CBR</td>
<td>q22.12</td>
<td>Carbonyl reductase</td>
</tr>
<tr>
<td>CBS</td>
<td>q22.3</td>
<td>Cystathionine-β-synthetase</td>
</tr>
<tr>
<td>CBF2</td>
<td>q22.3</td>
<td>Core-binding factor, runt domain, α subunit</td>
</tr>
<tr>
<td>CNN2</td>
<td>q11.1</td>
<td>Calonin 2</td>
</tr>
<tr>
<td>COLA6A1</td>
<td>q22.3</td>
<td>Collagen, type VI α-1</td>
</tr>
<tr>
<td>COLA6A2</td>
<td>q22.3</td>
<td>Collagen, type VI α-2</td>
</tr>
<tr>
<td>COLA18A1</td>
<td>q22.3</td>
<td>Collagen, type XVIII α-1</td>
</tr>
<tr>
<td>CRFB4</td>
<td>q22.1</td>
<td>Cytokine receptor, family II, member 4</td>
</tr>
<tr>
<td>CRY1</td>
<td>q22.3</td>
<td>Crystalin, α polypeptide 1</td>
</tr>
<tr>
<td>CSTB</td>
<td>q22.3</td>
<td>Cystatin B (stefin B)</td>
</tr>
<tr>
<td>CTBP2</td>
<td>q21.3</td>
<td>C-terminal binding protein 2</td>
</tr>
<tr>
<td>DCR</td>
<td>q22.3</td>
<td>Down syndrome chromosome region</td>
</tr>
<tr>
<td>DFN8</td>
<td>q22.3</td>
<td>Deafness, autosomal recessive 8</td>
</tr>
<tr>
<td>DSCAM</td>
<td>q22.2–22.3</td>
<td>Down syndrome cell adhesion molecule</td>
</tr>
<tr>
<td>EP1M1</td>
<td>q22.3</td>
<td>Epilepsy, progressive myoclonic 1</td>
</tr>
<tr>
<td>ERG</td>
<td>q22.3</td>
<td>Avian erythoblastosis virus E26 avian oncogene</td>
</tr>
<tr>
<td>ES1</td>
<td>q22.3</td>
<td>ES1 (zebrafish) protein, homolog</td>
</tr>
<tr>
<td>ETS2</td>
<td>q22.3</td>
<td>Avian erythoblastosis virus E26 oncogene homolog 2</td>
</tr>
<tr>
<td>EZH2</td>
<td>q22.2</td>
<td>Enhancer of zeste (Drosophila) homolog-2</td>
</tr>
<tr>
<td>FPDM</td>
<td>q22.1–22.2</td>
<td>Platelet disorder, familial, with myeloid malignancy</td>
</tr>
<tr>
<td>GABPA</td>
<td>q21–22.1</td>
<td>GA-binding protein transcription factor, α subunit</td>
</tr>
<tr>
<td>GART</td>
<td>q22.1</td>
<td>Phosphoribosylglycinamidase formyltransferase</td>
</tr>
<tr>
<td>GARS</td>
<td>q22.1</td>
<td>Phosphoribosylglycinamidase synthetase</td>
</tr>
<tr>
<td>AIRS</td>
<td>q22.1</td>
<td>Phosphoribosylaminomimidazole synthetase</td>
</tr>
<tr>
<td>GRIK1</td>
<td>q22</td>
<td>Glutamate receptor, subunit 5</td>
</tr>
<tr>
<td>GT355</td>
<td>q22.3</td>
<td>GT355 gene</td>
</tr>
<tr>
<td>GPX2P2</td>
<td>chr 21</td>
<td>Glutathione peroxidase pseudogene 2</td>
</tr>
<tr>
<td>HLC5</td>
<td>q22.1</td>
<td>Halocarboxylase synthetase</td>
</tr>
<tr>
<td>HMG14</td>
<td>q22.3</td>
<td>Nonhistone chromosomal protein HMG-14</td>
</tr>
<tr>
<td>HPE1</td>
<td>q22.3</td>
<td>Holoprosencephaly-1, alobar</td>
</tr>
<tr>
<td>HRMT1L1</td>
<td>q22.3</td>
<td>HMT1 (hnRNp methyltransferase, S. cerevisiae)-like</td>
</tr>
<tr>
<td>HSPA3</td>
<td>chr 21</td>
<td>Heat shock 70-kd protein 3</td>
</tr>
<tr>
<td>HTOR</td>
<td>chr 21</td>
<td>5-hydroxytryptamine oxygenase regulator</td>
</tr>
<tr>
<td>IFNAR</td>
<td>q22.1</td>
<td>Interferon, α and β receptor</td>
</tr>
<tr>
<td>IFNGT1</td>
<td>q22.1–22.2</td>
<td>Interferon, γ receptor 2</td>
</tr>
<tr>
<td>ITGB18</td>
<td>q22.3</td>
<td>Integrin, β-2, antigen CD18, lymphocyte function-associated antigen-1</td>
</tr>
<tr>
<td>ITSN</td>
<td>q22.1–22.2</td>
<td>Integrin</td>
</tr>
<tr>
<td>KCNJ6</td>
<td>q22.1–22.2</td>
<td>Potassium inwardly-rectifying channel, subfamily J, 6</td>
</tr>
<tr>
<td>KCNJ7</td>
<td>q22.1</td>
<td>Potassium inwardly-rectifying channel, subfamily J, 7</td>
</tr>
<tr>
<td>KCNJ15</td>
<td>q22.2</td>
<td>Potassium inwardly-rectifying channel, subfamily J, 15</td>
</tr>
<tr>
<td>KCNE1</td>
<td>q22.1–22.2</td>
<td>Potassium voltage-gated channel (Isk-related subfamily) member 1</td>
</tr>
<tr>
<td>KCNE2</td>
<td>q22.1</td>
<td>Potassium voltage-gated channel (Isk-related subfamily) member 2</td>
</tr>
<tr>
<td>KNO</td>
<td>q22.3</td>
<td>Knobloch syndrome</td>
</tr>
<tr>
<td>LSS</td>
<td>q22.3</td>
<td>Lanosterol synthase</td>
</tr>
<tr>
<td>MACSL1</td>
<td>chr 21</td>
<td>Myristoylated alanine-rich protein kinase 1 substrate</td>
</tr>
<tr>
<td>MAP80</td>
<td>chr 21</td>
<td>Minichromosome maintenance 3-associated protein</td>
</tr>
<tr>
<td>MNBH</td>
<td>q22.1</td>
<td>Minibrain (Drosophila) homolog</td>
</tr>
<tr>
<td>MST</td>
<td>q11.2</td>
<td>Myeloproliferative syndrome, transient</td>
</tr>
<tr>
<td>MX1</td>
<td>q22.3</td>
<td>Myxovirus (influenza) resistance 1</td>
</tr>
<tr>
<td>MX2</td>
<td>chr 21</td>
<td>Myxovirus (influenza) resistance 2</td>
</tr>
</tbody>
</table>
metabolism, to produce hydrogen peroxide (H$_2$O$_2$) and molecular oxygen (O$_2$). SOD-1 activity is present in most tissues, including the brain, in which it is expressed in both neurons and glia. Generally, SOD-1 is regarded as a protective enzyme because it scavenges free superoxide molecules in the cell. However, the H$_2$O$_2$ generated by SOD-1 action may itself, under certain conditions, become toxic. In the presence of Fe$^{2+}$, H$_2$O$_2$ will breakdown and form the highly toxic hydroxyl radical (OH$^-$), which can result in profound cellular damage. Excess OH$^-$ causes peroxidation of lipid membranes, as well as direct damage to proteins and DNA molecules. Gene dosage effects for SOD-1 have been documented in DS. Elevations in SOD-1 activity and increased lipoperoxidation are observed in the brain of those with DS as early as 15 to 25 weeks gestation.

S100 Protein. The gene for S100 (β subunit) maps to q22.2. S100 is a 10.5-kD, dimeric, zinc- and calcium-binding protein implicated in signal transduction pathways, which regulate the cell-cycle and neuronal differentiation. S100β inhibits the protein kinase C-dependent phosphorylation of several proteins, including the tumor suppressor p53. Levels of S100 are especially high in CNS tissue. In the brain, the β-subunit is found primarily in astroglial cytoplasm, although large amounts are also secreted extracellularly. S100β also acts as a mitogen, which stimulates glial proliferation, and it possesses neurotrophic properties on serotonergic neurons. S100 is detectable in human brain by approximately 10 weeks gestation, and levels increase in specific regions concomitant with advancing maturation. S100 mRNA and protein expression increase dramatically during postnatal maturation of the cerebellum, and gene dosage effects have been documented in the brains of those with DS.

Glutamate Receptor Subunit 5. The gene coding for glutamate receptor subunit 5 (GluR5) maps to q22. Glutamate is one of the most abundant and important excitatory neurotransmitters in the brain. An optimal amount of glutamate activity is necessary to mediate dendritic outgrowth and synaptogenesis during development. Underactivation of glutamate receptors may result in delayed maturation or disruption of neural differentiation, whereas overactivity can produce neuronal damage. The diversity of effects generated by the activation of glutamate receptors may be attributable to multiple receptor subtypes. The GluR5 subunit forms a critical component of the ionotropic kainate (KA)-preferring glutamate receptor.
vivo is incompletely understood, overactivation may lead to seizure activity and neurotoxicity. Heteromeric complexes composed of KA-sensitive receptor subunits (GluR5, GluR6, GluR7, KA1, and KA2) form calcium-conducting channels under certain conditions. Calcium permeability is determined by RNA editing of the transmembrane segment of the GluR5 and GluR6 subunits, which comprise most KA-preferring receptors. In rodents, GluR5 mRNA editing results in a sharp reduction in calcium conductance through KA channels. A temporal analysis of GluR5 mRNA editing shows it to be upregulated in the cortex during fetal and early postnatal life. GluR5 expression is most robust in cortical layers II, III, and IV, and expression peaks during the period of greatest developmental plasticity in the somatosensory cortex. In adult primates, a monoclonal antibody recognizing GluR5/6/7 KA receptor subunits shows labeling of neurons throughout the neocortex. In adult primates, a monoclonal antibody recognizing GluR5/6/7 KA receptor subunits shows labeling of neurons throughout the neocortex. Postsynaptic densities located on dendritic shafts and spines showed the most intense staining, particularly those associated with pyramidal cells in cortical layers II, III, and V. There are no studies documenting a gene dosage effect for GluR5 in the brain of persons with DS.

Single-Minded Gene. One of two human homologs of the Drosophila single-minded (SIM) gene, SIM2, maps to q22.2. SIM2 codes for a basic helix-loop-helix nuclear protein with putative transcriptional repressor activity. In Drosophila, SIM2 is expressed in the precursor cells of the CNS midline, where it is required for synchronized cell division and establishment of proper cell lineage. It is believed to function as a master-regulator of CNS midline development. In fetal rats, SIM2 expression is high in the neuroepithelium of the cerebral vesicle, whereas in fetal mice, expression is highest in the hypothalamus, ventral diencephalon, and brachial arches. In the human brain, SIM2 expression has been detected in the germinal matrix of the developing cerebral cortex. SIM2 has been excluded as a candidate gene for a genetic form of holoprosencephaly caused by HPE1, which maps nearby within q22.3.

Minibrain Gene. The human homolog of the Drosophila minibrain (MNB) gene maps to q22.1. MNB codes for a novel type of serine-threonine protein kinase. In Drosophila, MNB is expressed during neuroblast proliferation and is believed to be important in regulating cell-cycle kinetics during cell division. This dual-specificity tyrosine phosphorylation-regulated kinase is also expressed in human fetal brain as well as in nonneuronal tissues. In the adult mouse brain, mRNA expression is localized to the olfactory and cerebral cortices, pyriform cortex, pyramidal cells of the hippocampus, cerebellum, and hypothalamus. Transgenic mouse models suggest that overexpression of MNB results in impaired learning and memory function. Its putative role in the regulation of neuronal proliferation and cell division in humans awaits further study.

Cystatin B. The gene coding for Cystatin B (CSTB) maps to q22.3. Mutation of CSTB is the cause of an inherited
form of progressive myoclonic epilepsy (PME). This means to represent a novel mechanism of epileptogenesis, and its role in the neuropathogenesis of myoclonic epilepsy and DS remains to be established.

GARS-AIRS-GART. The gene for the trifunctional protein glycaminidase ribonucleotide synthetase (GARS), aminoimidazole ribonucleotide synthetase (AIRS), and glycaminidase ribonucleotide formyltransferase (GART) maps to q22.1. The GARS-AIRS-GART protein complex catalyzes the second, third, and fifth steps, respectively, in de novo purine synthesis. Purines are essential for nucleic acid synthesis and energy metabolism. Interestingly, levels of uric acid, xanthine, and hypoxanthine, the end-products of purine catabolism, are increased in those with DS.

PCP4. The gene for Purkinje cell protein (PCP4) maps to q22.2–22.3. PCP4 codes for the peptide PEP-19, which is found exclusively in the brain. PEP-19 is most abundant in cerebellum, where it localizes to the cell body, axon, and dendrites of Purkinje cells. The function of PEP-19 is currently unknown.

DS Cell-Adhesion Molecule. The DS cell-adhesion molecule (DSCAM) gene maps to q22.2–22.3. DSCAM is expressed in all regions of the brain and in cells of neural crest origin. The DSCAM protein is believed to be a member of the immunoglobulin superfamily involved in axonal outgrowth during development of the nervous system. Its role in the neuropathogenesis of DS is unknown.

NEUROBIOLOGY

In DS, as in other trisomic conditions, the developmental expression of normal genes present in triplicate results in altered patterns of development, histoanatomic, and/or physiologic function. Our understanding of how an extra copy of chromosome 21 leads to the development of microcephaly, cognitive and language impairment, and neuromotor dysfunction (hypotonia, diminished reflexes, and motor delays) remains poorly understood. Ultimately, the effects of gene dosage imbalance must be understood within the framework of those critical developmental events which regulate brain organization and function. Accordingly, the impact of gene overexpression on the cellular, molecular, and biochemical processes which regulate neuronal proliferation, migration, differentiation, and organization will continue to be an area of active research in the future.

Developmental Neuropathology

The neurobiologic sequelae of trisomy 21 include a variety of anatomic, histologic, ultrastructural, and biochemical alterations. No single finding, however, is pathognomonic for DS, because many of these alterations are seen in the brains of individuals with other mental retardation/major congenital anomaly syndromes. Furthermore, not every individual with DS necessarily manifests each of these changes to the same degree. The brain of persons with DS is said to have a characteristic morphologic appearance, which permits it to be easily identified at autopsy. Decreased size and weight with foreshortening of the anterior-posterior diameter, reduced frontal lobe volume, flattening of the occiput, and a narrow superior temporal gyrus are characteristic. Primary cortical gyri may appear wide, whereas secondary gyri are often poorly developed or absent with shallow sulci. The cerebellum and brain stem are frequently noted to be markedly reduced in size compared with forebrain structures. During the first half of gestation, brain morphology does not seem to be markedly different in fetuses with DS. Overall, brain growth may appear normal up to 5 or 6 months postnatal before decelerating later in the first year of life. During this period, the growth of dendritic arbors, which normally results in expansion of the neuropil and increased head circumference, begins to go awry.

Detailed examination at autopsy indicates that the critical periods of brain development primarily affected by trisomy 21 include neuronal proliferation, differentiation, and organization. Myelination is somewhat more variable. Generalized hypopcellularity of the brain seems to be due to both primary reduction in neuron proliferation and increased neuronal apoptosis early in fetal development.

Reduction in neuron number and density have been demonstrated for most brain regions examined. In the cerebral cortex, there is neuronal reduction in all cortical layers, with a striking paucity of small interneurons from layers II and IV and layer III pyramidal neurons. Interneurons use the neurotransmitter γ-aminobutyric acid and provide the primary inhibitory influence onto the pyramidal cells of the cerebral cortex. Additionally, interneurons are believed to perform a critical role in the higher-order information processing capabilities of the cerebral cortex vis-à-vis local intracortical circuits. Pyramidal neurons, which provide the major cortical efferents to subcortical and corticocortical pathways, are excitatory and use the amino acid glutamate as a primary neurotransmitter. Depletion of cortical interneurons, as well as other factors which disrupt the delicate balance between excitation and inhibition within cortical circuits, may also explain the co-occurrence of seizures in individuals with DS. The magnitude of reduction in small interneurons and pyramidal neurons undoubtedly differs among individuals with DS and may partially explain the variability of cognitive and neurodevelopmental impairments observed.

Ultrastructural studies of cortical pyramidal neurons reveal abnormalities within dendritic arbors and a reduced number of postsynaptic spines. Surviving spines may be abnormally long, thin, or irregular in contour and appearance. Dendritic spine density within layer V seems to develop at a rate close to that of controls for the first few months of life before showing a dramatic decline, whereas
synaptic density within layer III seems to be reduced at birth (Fig. 2A). Reductions in synaptic density and surface area are also present postnatally. These reductions, along with accompanying alterations in spine morphology, almost certainly result in dysfunctional synaptic transmission in the cerebral cortex, which further contributes to the cognitive and neurodevelopmental impairments observed in children with DS. There is also evidence to suggest that unlike controls, the pattern of dendritic connections actually becomes less complex during the first 5 years of life (Fig. 2B). Such findings indicate a dysregulation of those mechanisms mediating regressive events in the developing brain of young children with DS.

Delays in myelination are sometimes observed in DS. During the first year of life, decreased white matter formation is observed throughout the cerebral hemispheres, basal ganglia, cerebellum, and brain stem. This pattern is interesting because it identifies structures known to regulate muscle tone and neuromotor function. Because muscle tone generally improves with age, it is tempting to hypothesize that these improvements are in part the result of “catch-up” myelination and subsequent neurornaturation. Beyond the first 2 to 3 years of life, myelin delay affects primarily those fiber tracts with a late beginning and slow myelination cycle, especially intercortical and U-fibers of the frontal and temporal cortices.

Neuroimaging

Magnetic resonance imaging (MRI) has allowed researchers to document volumetric relationships among various structures within the brains of children with well-defined cognitive and behavioral syndromes. This approach offers the opportunity to understand which brain structures are implicated in specific neurobehavioral conditions and may also yield insight into the question of individual variation among persons with the same neurogenetic syndrome.

Several MRI studies have demonstrated volume reduction for whole brain, cerebral cortex, white matter, and cerebellum in DS. Specifically, the frontal cortex, uncus, amygdala, hippocampus, and parahippocampal gyrus all show dramatic reductions in size, compared with subcortical structures, including regions of the thalamus, putamen, and globus pallidus, which seem nearly normal in size. Some of these imaging studies have tended to focus on patterns of morphologic difference between Down and William syndromes (WS). Two MRI studies have highlighted frontal lobe involvement in DS. Wang et al. described decreased width of the rostral-most portion of the corpus callosum and increased bend angle when comparing typical children and children with WS. However, no mention of morphologic variation or volume reduction of specific cortical gyri with correlation among cognitive and behavioral function has ever been reported in children with DS.

Oxidative Stress and CNS Development

Evidence suggesting that increased oxidative stress is related to the early cognitive manifestations of DS has been argued for more than two decades. Sinet et al. reported a highly positive correlation between erythrocyte glutathione peroxidase (GSHPx) activity and IQ in children with DS as indicative of the impact of oxidative status on cerebral function. Brooksbank and Balazs demonstrated increased SOD1 activity (60%) as well as increased lipid peroxidation (36%) in the cerebral cortex of fetuses with DS occurring as early as the 25th week of gestation. Recent evidence has also emerged showing that fetal DS neurons exhibit a three- to four-fold increase in reactive oxygen species (ROS) and elevated levels of lipid peroxidation in vitro before the onset of degeneration and cell death, which differs significantly from control neurons. Pretreatment of cultures with a variety of antioxidant compounds enhanced neuronal viability and in some cases inhibited the generation of ROS and subsequent lipid peroxidation. This finding is consistent with the hypothesis that oxidative stress, present during fetal and early postnatal development, could exert a critical influence on the differentiation and survival of neurons in the brains of individuals with DS. However, this hypothesis has not been tested in vivo and may prove a difficult question to answer given the practical constraints of conducting such research. Measures of oxidative damage in living subjects with DS during the early years of postnatal brain development demonstrate that biomarkers of both lipid and DNA oxidation are increased in young children with DS compared with their siblings.

The effects of chronically increased membrane lipid peroxidation on synaptic and cellular function may be particularly important for understanding how neurocognitive impairment evolves over time in DS. Lipid membrane peroxidation negatively affects ion homeostasis by modifying membrane transporters and ion channels, especially Na+/K+-ATPase and the glucose- and glutamate-transporters (Fig. 3). Disturbances in Ca2+ homeostasis may also result from alterations in endoplasmic reticulum and mitochondria, two organelles critical for intracellular Ca2+ sequestration and signaling (see the review by Mattson”). Additional studies that support the negative effects of oxidative stress on neuronal function in DS derive from work using the Ts16 mouse model. Certain species of reactive oxygen also serve as important signaling molecules under normal physiologic conditions. At least two gene transcription factors, nuclear factor (NF)-κB and activator protein (AP)-1, are regulated by intracellular redox state. Thus, in DS tissue, the resultant pattern and timing of gene expression in cells of neuronal and glial lineage may not be determined by gene dosage considerations alone and could result in complex gene-gene interactions, with consequences for brain development and function that are difficult to predict.

Neurodevelopmental Function

Cognition. To discuss the issues of cognitive decline, developmental plateauing, or the cognitive benefits of early intervention programs is to touch the “third rail” of a highly charged topic. Delays in early language-based and performance-based cognitive milestones are most often
evident toward the end of the first year of life. As expectations for language and cognitive growth increase with age, these delays usually become apparent to both parents and professionals alike. Numerous studies have demonstrated certain trends that seem to be characteristic of cognitive development in children with DS. Several investigators report a nonlinear rate of cognitive growth during the first decade of life. These investigators use declining developmental quotients (DQ) or intellectual quotients (IQ) to argue for a slowing in cognitive growth over time. Some of these same studies report a plateau in the rate of cognitive development during the first decade. At least one study found no evidence of decline in either DQ or IQ during the first 3 years of life. Proposed sources of individual cognitive variation may include, but are not limited to, genetic and neurobiologic factors, associated medical conditions, and social and educational opportunities. Variables noted to be negatively associated with cognitive function include the presence of severe congenital heart disease or hypotonia, seizures, and severe sensory impairments. The factor which correlates positively with enhanced cognition is mosaicism for trisomy 21. Additional factors which are reported to positively influence cognitive outcome, but which have been insufficiently demonstrated in well-designed, controlled studies, include the effect of early intervention programs and the parents’ level of education or socioeconomic status.

Several recent reviews of the effectiveness of early intervention in DS have concluded that despite benefits in social adaptive function, any effects on cognition (as measured by IQ) are short-lived. Given the current availability of early-intervention programs, it would be difficult (although not impossible) to design clinical trials to test hypotheses regarding the best methods and/or frequency of specific types of intervention. For the foreseeable future, developmentally based intervention programs will continue to provide social enrichment and educational opportunities to young children and their parents. However, the fact remains that despite widespread participation in such programs, significant numbers of children with DS will function in the moderately retarded (40%–60%) to severely retarded (30%) range of mental retardation during the first decades of life.
It is likely that additional cognitive benefits can be gained by safely and effectively enhancing the brain’s neurochemical capacity to learn and retain new information. Advancing neurocognitive function beyond the limits imposed on the brain as a consequence of its ontogenetic heritage will require new therapeutic strategies. Given what is known about excitatory neurotransmission and its role in learning, memory, and neuronal plasticity, pharmacologic interventions that act directly on the biochemical and functional substrate of developing excitatory and cholinergic synapses will be required to further advance neurocognitive potential for young children with this condition.

Language. Most, but not all, children with DS will learn to speak. Several studies have documented large individual differences in the age of onset and complexity of spoken language in children with DS. As a group, children with DS demonstrate greater deficits in verbal-linguistic skills relative to visual-spatial skills. Asynchrony of language development has been well documented in this population. Language production skills often lag behind language comprehension skills. Some of the factors that have been postulated to impact specifically verbal-linguistic skills in children with DS include hearing loss, altered auditory perception, family and environmental variables, and specific neurobiologic impairments which impact language-based learning. One study found a significant correlation between enhanced language production at 3 years of age and higher cognitive level, less severe hypotonia, and gender, and females generally performed better than males. Remarkably, there is a dearth of data demonstrating the effects of early speech-language intervention for children with DS.

There is substantial literature dealing with certain aspects of linguistic competency in DS. For example, most children will demonstrate especially poor auditory sequential memory skills. Asynchrony of language development has been well documented in this population.
suggest that those with DS fail auditory memory tasks because they have a deficiency in retrieval and short-term storage of lexical information. Surprisingly little research has focused on the neurobiologic substrate of auditory-based receptive language impairment in this condition. A notable exception has been the use of electrophysiologic methods, which are instructive in discerning a unique profile of auditory processing. Contrary to findings of right-ear advantage for dichotic-listening tasks in the general population, a left-ear advantage for auditory stimuli has been reported in those with DS.

Interestingly, those subjects with DS who had the most severe language impairments demonstrated the most atypical ear advantage. Additional support for auditory-processing difficulties comes from a recent study, which reported an abnormal pattern of left-right ear brain stem auditory-evoked responses in DS children and adults compared with mentally retarded control subjects.

A quasineurolologic model of atypical cerebral specialization has been proposed to explain the discrepancy between language comprehension and speech expression skills. This model proposes that a functional disassociation exists between right hemispheric systems subserving auditory perception and those left hemispheric systems associated with movement production, including speech sounds. It predicts that a breakdown in communication results from a “partial loss” of linguistic information secondary to the “separation” of speech perception and movement production systems.

Given the central role of the temporal and frontal lobes in speech-sound processing and production and their known involvement in the neuropathogenesis of DS, it is anticipated that a more complete understanding of neuro-linguistic dysfunction in this condition will soon emerge. Functional neuroimaging combined with electrophysiologic methods should prove highly informative in this regard.

Neuropathology and Aging

Several important age-related changes in the brain have been described in association with DS. Calcification of the basal ganglia (BGC) has been described in several reports. Temporally, the globus pallidus and putamen are affected. Massive calcium deposition within brain parenchyma is frequently observed in those who die during the first decade of life. Those surviving beyond this period and into the fourth decade often show perivascular calcium deposition in or around blood vessel walls themselves. Using computerized tomography (CT), Wisnewski et al. demonstrated that 27% of those with DS of various ages showed BGC. None of these individuals had any clinical evidence of movement disorder, dysfunction of serum calcium homeostasis, parathyroid hormone secretion, or vitamin D regulation. In contrast, 100% of the brains of those with DS showed histopathologic evidence of BGC at postmortem examination. Interestingly, only 11% of these autopsied brains showed evidence of BGC when evaluated by CT scan before autopsy. Thus, BGC seems to be a nearly universal finding in all individuals with DS, the pathogenesis and clinical significance of which remain obscure.

Neuropathologic stigmata of Alzheimer’s disease (AD) is also a consistent finding in DS. All older persons (>35–40 yr) with DS develop senile plaques (SP), neurofibrillary tangles (NFT), and granulovascular bodies (GVB), which is virtually identical with the AD pathology seen in the general population. SPs consist of extracellular deposits of β-amyloid peptide (Ab) and the remnants of degenerating neuronal cell bodies. NFTs are composed of the hyperphosphorylated cytoskeletal protein tau, which forms an intracellular precipitate with a characteristic paired-helical configuration. GVBs consist of clear areas of vacuolization containing clusters of dense, granular material within the neuronal perikaryon. AD-type neuropathologic changes are most pronounced throughout the cerebral cortex and limbic structures. Autopsy studies have convincingly demonstrated that SPs and NFTs are present in all individuals with DS by the fourth decade of life, with some individuals showing a much earlier onset. The exact mechanisms by which neurons ultimately die in the brain of aging subjects with DS remain unknown, although it may involve an apoptotic mechanism.

In addition to histopathologic similarities, a similar pattern of neurochemical deficits is observed in aged individuals with DS. Presynaptic markers for cholinergic, noradrenergic, and serotonergic markers are all reduced in the brains of aged individuals with DS. These neurochemical changes seem to be caused by degeneration and cell loss of the cortical projection neurons arising from the nucleus basalis of Meynert (cholinergic), locus ceruleus (noradrenergic), and dorsal raphae nuclei (serotonergic). Progressive degeneration and loss of neurons from these subcortical nuclei are associated with the appearance of SPs and NFTs in the cerebral cortex and hippocampus. Degenerative changes and cell loss in association with Lewy body pathology in the substantia nigra and ventral tegmental area (dopaminergic) may also be present. Pharmacologic interventions, designed to enhance cholinergic neurotransmission in the brain, seem to hold some promise for enhancing communication and adaptive behavior in young adults with DS.

Neuroimaging

MRI has permitted researchers to document changes in the relationship of various brain structures associated with aging in the general population and in DS. It would be particularly helpful to know which brain regions are most vulnerable to atrophy as AD pathology progresses, as well as whether such changes are associated with specific cognitive or neuropsychiatric symptoms of the disease. In a study of healthy, nondemented adults with DS, Kesslak et al. reported enlargement of the parahippocampal gyrus with reduction in the hippocampus and neocortex compared with normal controls. In a similar study, Raz et al. found evidence of shrinkage in both cerebral and cerebellar hemispheres, ventral pons, mammillary bodies, and hippocampus compared with normal controls. The dorsolateral prefrontal cortex, anterior cingulate gyrus, and inferior temporal and parietal cortices were also affected. Similar to
the findings of Kesslak et al, they also noted a larger parahippocampal gyrus that was negatively correlated with measures of general intelligence. More recently, Pearlson et al.156 compared elderly subjects with DS with and without dementia and found more generalized atrophy (for age), mesial temporal shrinkage, and third ventricular enlargement in subjects with clinical dementia. In a companion study, Aylward et al.159 determined that hippocampal volume, although disproportionately small for brain size, remains fairly constant throughout the fifth decade in those without dementia. Subjects older than 50 years with dementia showed further volume reductions in hippocampus and marked volume reduction in amygdala that exceeded reductions in total brain volume. In the near future, quantitative MRI measures may prove useful as outcome measures in clinical trials designed to prevent or ameliorate AD progression in individuals with DS.

Oxidative Stress and AD Neuropathology

Buoyed by evidence suggesting a role for oxidative injury in the progression of AD, the contribution of oxidative stress in the manifestation of age-related changes in the brain of subjects with DS is beginning to attract more research interest.160,161 Several lines of evidence are now converging to paint a dynamic picture of the putative mechanisms involved: (1) increased lipid peroxidation in the brain of subjects with AD, particularly in those regions in which the neuropathologic lesions are most severe;162–165 and increased 4-hydroxynonenal, an aldehyde product of advanced lipid peroxidation,166 with resultant disturbances in ion homeostasis;167 (2) increased protein and DNA oxidation in the brain of subjects with AD;167–171 (3) studies showing that Aβ peptide is capable of generating free radical damage and neuronal death;172–176 and (4) diminishing mitochondrial function and increased susceptibility to excitatory amino-acid induced cell death in the brain of subjects with AD.177–181

Direct evidence for the role of oxidative injury and its relationship to the AD pathology in DS has proved elusive. In one autopsy study, neither malondialdehyde, a marker of lipid peroxidation, nor glutathione peroxidase, which catalyzes the breakdown of hydrogen peroxide, was significantly altered in the brain samples of adults with either AD or DS.182 In a companion study, levels of 8-OHdG, an indicator of oxidative DNA damage, was also not increased in nuclear DNA from DS subjects and in all brain regions studied were consistently higher in frontal and temporal cortex samples from DS subjects and in all brain regions studied from AD subjects. Such findings are consistent with previous oxidative DNA damage in vivo and suggest that chronic oxidative injury constitutes a risk factor for subsequent neuronal death in aged individuals with DS.183–186

Chromosome 21, Inflammatory Mechanisms, and Alzheimer’s Neuropathology

APP and Aβ. The amyloid-cascade hypothesis currently offers one coherent picture of disease progression in DS.187 It is hypothesized that the overexpression of APP leading to increased Aβ formation (Aβ40/Aβ42) is the central event leading to AD-type pathology in DS. Recently, an amended model of selective neuronal vulnerability and Aβ deposition based on synaptic remodeling and neurite repair mechanisms has also been proposed.188 Under normal physiologic conditions, a soluble form of Aβ is produced from APP after prolytic cleavage by α-secretase (Fig. 1). Because the putative Aβ fragment is destroyed, this pathway, if functionally intact, cannot contribute to plaque formation. Instead, a soluble sAPP is produced and is either excreted or internalized and recycled. A second pathway entails cleavage on either side of the putative Aβ peptide by β- and γ-secretases, resulting in the release of either Aβ40 or Aβ42 fragments.189,190

Several studies have focused on the early aspects of Aβ deposition in subcortical and cortical structures in DS.146,147 One study noted increased Aβ-staining in medial-temporal structures by age 8 years, which increased linearly up to age 40 years; considerable variability was noted among individuals.148 Both Aβ40 and Aβ42 forms are increased two- to three-fold in plasma from DS subjects compared with normal controls.191 This increase is greater than that predicted by gene dosage considerations alone and suggests that other factors are important for determining Aβ production. Recently, the soluble form of Aβ42 has been detected in the brain during the first decade of life in DS, clearly preceding plaque formation by many years.192 Therapies targeting the production and/or clearance of Aβ40 and Aβ42 peptides before their aggregation and deposition in the brain are likely to be beneficial in halting disease progression. Such therapies are currently the focus of intensive research.193,194

apolipoprotein E. The gene encoding the cholesterol-carrying apolipoprotein E (*APOE*) maps to chromosome 19 has three allelic forms and is inherited as an autosomal codominant trait.195 In the general population populations with and without APOE E4 (0.14) and APOE E2 (0.07). Accordingly, three different homozygous or heterozygous genotypes are possible, resulting in six distinct phenotypes. Certain phenotypes have been linked to increased risk for developing both late-onset, familial, and sporadic forms of AD.196,197 Gene dose for *APOE E4* is correlated with both increased risk and earlier onset of AD, whereas the *APOE E2* gene dose seems to confer some protective effect.198 To determine whether this relationship holds true in DS, several studies have examined *APOE* allele frequency in adults with and without clinical symptoms of dementia.199–203 Differences in sample size, ascertainment methods, and determination of dementia onset make it difficult to compare studies. The study by Prasher et al.205 in 1997 included a meta-analysis of data from six previous studies from which several important conclusions have emerged: (1) the overall frequency of the three *APOE* alleles is similar in control populations with and
without DS; (2) there is a trend for higher APOE E4 allele frequency in DS subjects with clinical dementia compared with those without dementia (15.1% vs 10.4%); and (3) there is a trend for lower APOE E2 allele frequency in DS subjects with clinical dementia compared with DS subjects without clinical dementia (5.8% vs 10.0%). In those subjects for whom the age of dementia onset was available, this same study reported a trend for lower mean age of onset in the presence of APOE E4 allele compared with APOE E2 (45.7 vs 52.4 yr). Since the publication of that article in 1997, three more studies have reported a greater frequency of APOE E4 allele in DS with dementia compared with those without (18.8% vs 6.9%; 17.7% vs 10.9%; 18.0% vs 13%). The study by Tyrrell et al also reports a significantly lower frequency of APOE E2 allele in DS with dementia compared with age-matched controls without dementia (0% vs 8.3%), thus supporting previous findings of a protective effect of APOE E2 in the expression of clinical disease. Another more recent meta-analysis also confirms the protective effect of APOE E2.

The mechanism of how ApoE protein affects the risk for AD is far from clear. In brain tissue, ApoE is synthesized by astrocytes and macrophages, where it participates in the redistribution of cholesterol and lipid breakdown products following neuronal injury. Specific cellular interactions are mediated via binding to the low-density lipoprotein (LDL) receptor and the LDL receptor-related protein/α₂-macroglobulin receptor (LRP). It has been suggested that ApoE production is necessary for the clearance of Aβ protein through binding to the LDL and LRP receptors. It has also been shown that ApoE3 and ApoE4 isoforms demonstrate different binding affinities for Aβ protein and may thus vary in their ability to remove it from the neuropil. Support for this hypothesis comes from autopsy studies of subjects with late-onset AD with increased numbers of plaque and vascular Aβ deposits in cerebral cortex of subjects with one or two APOE E4 alleles compared with those with one or both APOE E3 alleles. Similarly in DS, inheritance of the APOE E4 allele seems to confer an additional, and independent, risk factor for developing higher levels of amyloid accumulation.

SOD1. Alterations in antioxidant defense systems have also been hypothesized to play a role in the AD-type pathology observed. Interestingly, adults with DS and AD-type pathology have significantly lower SOD-1 activity in erythrocytes compared with age-matched DS controls without AD-type pathology. In the mature brain, particularly intense SOD-1 immunostaining is found in large pyramidal neurons of the neocortex and hippocampus. In the brains of aged persons with DS, SOD-1 immunoreactivity is only transiently expressed in a subset of mature SPs; such staining was also found in the brain of individuals with AD, but was rarely seen in normal aged controls. SOD-1 immunoreactivity is also absent from early diffuse plaques; thus, elevated SOD-1 may not be necessary in the initial pathologic process that leads to SP formation in DS. The neurobiologic manifestations of elevated SOD-1 activity will continue to be an important and active area of research.

S100. Elevated levels of S100 protein and increased size and number of S100-immunoreactive astrocytes have also been detected in DS brain from aged persons, and a role for S100β has been proposed in the pathogenesis of AD-type neuropathology. Based on findings of astrogliosis and increased levels of the cytokine interleukin 1 (IL-1), it has been proposed that elevated S100β secreted from astrocytes may stimulate the proliferation and activation of nearby microglia.

Microglia. The role of inflammatory mechanisms as contributing to the progression of AD has not been emphasized until recently. Microglia are cells derived from the mononuclear-phagocyte lineage. They comprise up to 20% of the glial cell population and function as the predominant immune-effector cell population in the brain. In response to neuronal injury, they are swiftly activated to differentiate into phagocytic brain macrophages, whereupon they may release a number of toxic secretory products including proteases, cytokines, reactive oxygen species, and reactive nitrogen species. In AD, the number of microglia is markedly increased.

The neurobiologic manifestations of elevated SOD-1 activity include vision or hearing loss, cardiovascular decompensation, and OBAS. The incidence of depression, obsessive-compulsive disorder, and dementia is significantly increased. Depression, which may be responsive to medication, is frequently misdiagnosed as AD in young and middle-aged adults. An incorrect diagnosis of dementia may lead health care workers and family members to abandon a search for effective treatments prematurely. Treatable medical conditions that may be associated with behavioral change need to be ruled out before arriving at a diagnosis of either depression or AD. Conditions include vision or hearing loss, cardiovascular decompensation secondary to uncorrected congenital heart disease or aortic regurgitation, hypothyroidism, hypoxemia secondary to obstructive sleep apnea, and medication effects.
Several studies have confirmed a bimodal peak in the prevalence of new-onset seizures in adults with DS.243–245 The first peak occurs between 20 and 30 years of age, with a second peak occurring around age 45. Typically, partial complex and partial simple seizures are seen in the early-onset group and are not associated with cognitive decline or diffuse electroencephalographic (EEG) abnormalities. Generalized tonic-clonic seizures or myoclonus are typically seen in the later-onset adult group and are most often associated with both cognitive decline and diffuse EEG abnormalities—findings which herald the onset of an AD-type dementia.

Despite the apparent universal finding of AD-type neuropathologic changes by the fourth decade of life, the implications for the expression of a clinical dementia syndrome are less clear. In one retrospective review of 16 studies, both postmortem brain tissue and clinical findings were used to support the diagnosis of AD in 33 people with DS between the ages of 35 and 60 years.246 All individuals had evidence of SPs and neurofibrillary tangles at autopsy, and one or more clinical manifestations were found in 75% of subjects: seizures (58%), change in personality (46%), focal neurologic signs (46%), apathy (36%), loss of conversational skills (36%), incontinence (36%), EEG abnormalities (33%), loss of self-help skills (30%), tremors or myoclonus (24%), visual or auditory deficits (24%), gait or mobility problems (21%), stubborn or uncooperative behavior (21%), depression (18%), memory loss (18%), increased muscle tone (12%), disorientation (12%), and delusions or hallucinations (3%). Prospective studies reveal a very different clinical picture of AD-related behavioral changes. Memory loss, temporal disorientation, and reduced verbal skills have been reported as the earliest signs of AD in higher-functioning individuals.247 Those individuals in the severe-to-profound range of mental retardation more often manifest apathy, inattention, and decreased social interaction. Motor impairments, new onset of seizures, and loss of self-help skills have also been reported. The natural history of AD in DS indicates that the mean age for onset of clinical symptoms is 51.3 years in the moderately retarded and 52.6 years in the severely retarded.248 The prevalence of symptoms increases from 11% between 40 and 49 years of age to 77% between 60 and 69 years and approaches 100% in all subjects older than 70 years.248 Once recognized, the clinical symptoms of dementia progress rapidly in all subjects. Advanced cases are also more likely to show extrapyramidal signs or parkinsonian features.249

FUTURE RESEARCH

In the coming decades, continued scientific advancement is likely to occur on a number of fronts.

Sequencing and Mapping of Chromosome 21

The DNA sequencing of chromosome 21 is now virtually complete.13 The greatest challenge ahead is to characterize the biological role of newly identified genes, characterize their temporal and spatial pattern of expression during CNS development, and then determine the mechanism(s) by which overexpression affects normal development and function in trisomy 21. This promises to be an exceedingly daunting task, even once all of the genes have been identified. Because of the complexity of genetic and epigenetic regulatory mechanisms operative during development, it will be some time before we are able to grasp the very intricate mechanisms by which major developmental events are disrupted in trisomy 21. Sophisticated computer modeling of gene expression in regionally and neurochemically specific cell populations in the developing brain will be a necessary tool to both aid our understanding of and to catalog these events.

Animal Models and Gene Function

It is well understood by physicians and scientists, but less so by the general public, that isolating any gene from chromosome 21 only marks the first step in elucidating its function and role in producing the phenotype of DS. The technology for producing rodent models with gene dosage imbalance has also advanced markedly during the past decade, and there now exist several animal models that can be used to understand the genetic basis for the DS phenotype.250–253 Transgenic and transomic mice (which are partially trisomic for mouse chromosome 16—a partial homolog to human chromosome 21) have proven especially promising in studies describing the developmental con-
sequences of gene dosage imbalance as it relates to brain development. These models will continue to be of great interest in determining how alterations in brain ultrastructure and neurochemistry results in specific cognitive and behavioral deficits.

Functional Neuroimaging and Multidisciplinary Neuroscience Data

Increasingly sophisticated computerization is making it possible to represent detailed graphic images of the human brain in two and three dimensions for the purpose of interactive mapping. Soon it will be possible to access images of the neuroembryologic development of the human brain with detailed information regarding cell type, regional connectivity, neurotransmitter phenotype, and gene expression profile. The advantages of a computerized system dedicated to understanding the structural and neurochemical organization of the DS brain are compelling.

Neurocognitive Enhancement

A revolution in our understanding and conceptualization of adult-onset neuropsychiatric disorders is taking place at this time. Once thought untreatable, neurodegenerative conditions such as AD, Huntington’s disease, and Parkinson’s disease are now the targets of intensive research and drug development on the part of the National Institutes of Health, biotechnology companies and the pharmaceutical industries. The vision and spirit of excitement that characterizes this movement has not been recognized within the arena of childhood-onset neurocognitive disorders. There may exist a window of opportunity during which carefully targeted pharmacologic intervention could produce a more favorable biological outcome for children with some forms of mental retardation, including DS.

Neuroprotection Against AD

The high risk of developing AD-type dementia in individuals with DS makes it clear that a neuroprotection strategy offers the best hope for palliation or prevention. Current clinical research strategies are focused on the use of antioxidants, anti-inflammatory agents, neurotrophic factors, or hormone replacement. Recent epidemiologic studies and clinical trials have been encouraging regarding possible benefits derived from using indomethacin (a nonsteroidal anti-inflammatory drug), estrogen, and the antioxidants selegiline (monoamine oxidase inhibitor) and α-tocopherol (vitamin E). Novel compounds designed to improve the clearance and/or to prevent deposition of the neurotoxic Aβ peptide are also on the horizon. Large randomized clinical trials of neuroprotective agents have yet to be conducted in persons with DS.

SUMMARY

The neurobiologic consequences of trisomy 21 remain incompletely understood. As a syndrome complex of genetic origin with multiple and variable neurobiologic and neuropsychologic manifestations, it will be some time before a complete understanding of this condition emerges based on molecular genetic and developmental biological principles. As this review intends to make clear, the clinically dominant model of DS as a developmental disorder is, by itself, incomplete and unsatisfactory for advancing knowledge of this condition based on emerging biological concepts. Discussions of DS as a disorder characterized primarily by developmental delay are rightfully enjoyed by parents, educators, and early-intervention personnel; after all, it is the language of their craft and it permits highly complicated biological events to be easily conceptualized in terms of the whole child. It would seem, however, that it is time to deemphasize reliance on developmental models as having indelible explanatory power or prognostic significance, especially considering what we know about the risks for adult-onset neurocognitive and psychiatric disorders. Moreover, current child-based developmental concepts, taught either in isolation or to the exclusion of genetic and neurobiologic paradigms, are woefully inadequate for training today’s clinician scientists to conduct meaningful biomedical research. Only as new information from molecular genetics, developmental biology, and the neurosciences are incorporated into clinically testable hypotheses will our understanding of DS advance accordingly. To produce the most meaningful clinical research requires that trainees in the fields of neurodevelopmental pediatrics, behavioral pediatrics, medical genetics, child neurology and psychiatry receive the necessary mentorship and research experience that will prepare them to address these critical questions. However, such opportunities are not readily available within the corridors of most departments of pediatrics, child neurology, or university-affiliated developmental disability programs, the primary mission of which is to train leaders in neurodevelopmental medicine. Until this situation is addressed, newborns with DS born in the year 2001 can expect to live longer lives compared with their peers from previous generations, but they will be unable to avoid the lengthening shadow of neurocognitive impairment that awaits them.

REFERENCES

5. Pueschel SP, Pueschel JK (eds): Biomedical Concerns in Persons
with Down Syndrome. Baltimore, MD, Paul H. Brookes, 1992, p 320
6. Coyle J, Oster-Granite M, Gearhart J: The neurobiologic conse-
7. Wisniewski K: Down syndrome children often have brain with ma-
turation delay, retardation of growth, and cortical dysgenesis. Am J
8. Carr J: Six weeks to twenty-one years old: A longitudinal study of
Psychiatry 29:407–431, 1988
9. Antonarakis S: Parental origin of the extra chromosome in trisomy 21
as indicated by analysis of DNA polymorphisms. N Engl J Med
324:872–876, 1991
syndrome due to t(10;21) translocation: Evidence that the Down
phenotype is related to trisomy of a specific segment of chromosome
11. Mikkel sen M: Down syndrome: Cytogenetical epidemiology. Her-
editas 86:45–49, 1977
12. Hook E: Down syndrome: Its frequency in human populations and
some factors pertinent to variations in rates, in de la Cruz F, Gerald P
(eds): Trisomy 21 (Down Syndrome): Research Perspectives.
Baltimore, MD, University Park Press, 1981, pp 3–68
Baltimore, MD, The Johns Hopkins University, 1982
15. Onodera K, Patterson D: Structure of human chromosome 21: For an
understanding of genetic diseases including Down’s syndrome.
16. Antonarakis S: 10 years of genomics, chromosome 21, and Down
17. Epstein CJ: The conceptual bases for the phenotypic mapping of
differences resulting from aneuploidy, in Epstein C (ed): Trisomy 21
(Down Syndrome): Research Perspectives. Baltimore, MD, University
Press, 1981, pp 1–18
18. Korenberg JR, Kowall NW, Liss, 1993, pp 1–18
Baltimore, MD, The Johns Hopkins University, 1982
understanding of genetic diseases including Down’s syndrome.
22. Antonarakis S: 10 years of genomics, chromosome 21, and Down
23. Neve R, Finch E, Dawes E: Expression of the Alzheimer’s amyloid
superoxide dismutase gene are associated with familial amyotrophic
superoxide dismutase in familial amyotrophic lateral sclerosis. Science
271:515–518, 1996
27. Rothstein JD, Britol LA, Hosler B, et al: Chronic inhibition of
superoxide dismutase produces apoptotic death of spinal neurons.
28. Sinet PM: Metabolism of oxygen derivatives in Down’s syndrome.
29. Takashima S, Duruta H, Mito T, et al: Immuno histochemistry of
superoxide dismutase-1 in developing human brain. Brain Dev
12:211–213, 1990
ischemic injury in transgenic mice overexpressing CuZn superoxide
oxygen free radicals to CuZn-superoxide dismutase activity in
transgenic, transfected, and trisomy cell. FASEB 6:903–910, 1992
with increased Cu/Zn-superoxide dismutase activity are resistant to
N-methyl-l-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.
33. Brookbank BWL, Balazs R: Superoxide dismutase, glutathione
peroxidase, and lipoperoxidation in Down’s syndrome fetal brain.
13:437–443, 1988
murine suppressor protein p53 as a protein kinase C substrate and a
36. Liu J, Lauer J: S-100β and insulin-like growth factor-II differen-
tially regulate growth of developing serotonin and dopamine neurons
37. Azmitia E, Dolan K, Whitaker-Azmitia P: S-100β but not NGF, EGF,
sulin or calmodulin is a CNS serotonergic growth factor. Brain Res
specific antigen (the S-100 protein) during human fetal development.
and protein in cerebellum during infancy in Down syndrome and
40. Mattson MP: Neurotransmitters in the regulation of neuronal
41. Klein Schmidt A, Bear M, Singer W: Blockade of NMDA receptors
disrupts experience-dependent plasticity of kitten striate cortex.
42. McDonald JW, Johnston MV: Physiological and pathophysiologi-
ical roles of excitatory amino acids during central nervous system
43. Choi DW: Glutamate neurotoxicity and diseases of the nervous
44. Seeburg P: The molecular biology of mammalian glutamate receptor
glutamate receptor subunit GluR5: Expression in the nervous system
controls a determinant of ion flow in glutamate-gated channels. Cell
67:11–19, 1991
47. Paschen W, Schmidt V, Dux E, Djuricic B: Temporal analysis of the
upregulation of GluR5 mRNA editing with age: Regional evaluation.
48. Bahn S, Volk B, Widen W: Kainate receptor gene expression in the
localization of AMPA/kainate and kainate glutamate receptor subunits
immunoreactivity in neurochemically identified subpopulations of
neurons in the prefrontal cortex of the macaque monkey. J Neurosci
13:2982–2992, 1993
Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis. Mol Cell Biol 16:5865–5875, 1996

188. Hardy J, Allsop D: Amyloid deposition as the central event in the...

194. Pennisi E: Enzymes point the way to potential Alzheimer's therapies. Science 286:650–651, 1999

277. CNS agents and new indications in development. Econ Neurosci 1:43–81, 1999